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We have measured local and nonlocal conductance of mesoscopic normal-metal/superconductor hybrid
structures fabricated by e-beam lithography and shadow evaporation. The sample geometry consists of a
superconducting aluminum bar with two normal-metal wires forming tunnel contacts to the aluminum at
distances of the order of the superconducting coherence length. We observe subgap anomalies in both local and
nonlocal conductance that quickly decay with magnetic field and temperature. For the nonlocal conductance
both positive and negative signs are found as a function of bias conditions, indicating at a competition of
crossed Andreev reflection and elastic cotunneling. Our data suggest that the signals are caused by a phase-
coherent enhancement of transport rather than dynamical Coulomb blockade.
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I. INTRODUCTION

Andreev reflection! (AR) is the process responsible for
the transfer of electrons from a normal metal into a super-
conductor at energies below the superconducting gap energy.
In multiterminal structures with two (or more) normal metals
(N) connected to a single superconductor (S), nonlocal or
crossed AR (CAR) may occur, where an electron entering the
superconductor from one normal-metal contact A forms a
Cooper pair by emitting a hole into a second contact B.>3 A
competing process is elastic cotunneling (EC),* where an
electron is transmitted to contact B without the formation of
a Cooper pair. CAR has attracted theoretical and
experimental®!3 attention mainly because it is predicted to
create spatially separated, entangled electrons in a solid-state
environment (see Ref. 14 for a brief review). While CAR can
be readily probed by spin selection™® using ferromagnetic
electrodes, this approach is unsuitable for entangler devices,
since projecting the spin will destroy entanglement. There-
fore, understanding the competition between CAR and EC in
multiterminal NSN structures is a prerequisite for the suc-
cessful design of superconducting solid-state entanglers. In a
recent experiment a bias-dependent crossover from EC to
CAR has been observed in a diffusive NSN structure with
low-transparency tunnel contacts.” While both quantum me-
chanical interference’”-'>-'® and Coulomb interaction'>!® have
been proposed to explain the result, its origin is not yet clear.
Here, we present an experimental investigation of both local
and nonlocal transport in lateral NSN hybrid structures. We
observe a subgap anomaly in the nonlocal conductance simi-
lar to the observations in Ref. 7. Comparison with local-
transport data reveals that the nonlocal signal is controlled by
a phase-coherent enhancement of local transport. Dynamical
Coulomb blockade (DCB) is shown to be present in the
samples but can be clearly ruled out as the cause of the
nonlocal conductance signal by its different dependence on
temperature and magnetic field.
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II. EXPERIMENTAL

Figure 1(a) shows a scanning electron microscopy (SEM)
image of the layout of our samples. They mainly consist of a
narrow superconducting aluminum wire of about 60 wum
length (contacts 1, 2, and 8), and perpendicular to it, two
copper wires (contacts 3/4 and 5/6) forming tunnel junctions
A and B to the aluminum. A third tunnel junction (contact 7)
was used for some control experiments. The central junction
area is shown on an enlarged scale in panel (b), together with

FIG. 1. (Color online) (a) SEM image of the sample layout. (b)
Closeup of the contact region, colorized for clarity. Two copper
wires (A and B) are connected by overlap tunnel junctions to a
weakly oxidized aluminum bar. The copper wires fork near the
tunnel contact to allow four-probe characterization. As a by-product
of shadow evaporation, additional unconnected parts of the sample,
and a Cu/Al/oxide/Cu trilayer (striped), are formed. The contact
configuration and measurement scheme is also indicated. The three
metal layers (Cu2, Cul, and Al) as created by shadow evaporation
are indicated above the image.
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TABLE I. Characteristic parameters of the six samples. Film thickness #¢,,, contact distance d, coherence length &, aluminum resistivity
pa at T=4.2 K, normal-state tunnel junction conductances G, and Gy, and contact transparencies 7, and 7g.

Icu2 d 3 [UN] Ga Gp
Sample (nm) (nm) (nm) (e Q cm) (uS) (uS) T, (X107) Ty (X1079)
1 20 75 120 4.1 1105 1530 49 5.6
11 20 100 120 4.2 660 760 5.3 5.2
1II 20 115 170 2.1 520 380 4.6 3.1
v 30 300 140 3.1 1020 1150 33 33
\'% 30 105 110 5.1 1480 1520 7.7 7.4
VI 30 105 110 5.3 1390 1110 7.3 5.6

a typical measurement configuration. Three metal layers
were evaporated onto an oxidized silicon substrate under dif-
ferent angles through a shadow mask fabricated by standard
e-beam lithography technique. First, an auxiliary layer of
30-nm-thick copper (Cul), was evaporated to form Ohmic
contacts to the two subsequent layers at interconnects to the
lines 2, 3, 6, 7, and 8. In the second evaporation step under a
different angle, the superconductor strip, an aluminum bar of
30 nm thickness, was created. The aluminum film was then
oxidized in situ by applying =1 Pa of pure oxygen for
~5 min to form a tunnel barrier. Then the third layer (Cu2),
made of copper with thickness 7¢,,, was evaporated, forming
the two tunnel contacts A and B to the aluminum. Sample
parameters such as contact areas, resistivities, etc., varied
slightly between fabrication batches. Consistent results were
obtained from six different samples with parameters given in
Table I. We show here mainly data from samples I and II.
The samples were mounted into a shielded box thermally
anchored to the mixing chamber of a dilution refrigerator.
The measurement lines were fed through a series of filters to
eliminate rf and microwave radiation from the shielded box.
A voltage V,, consisting of a variable dc bias and a low-
frequency ac excitation was applied to contact A, and the
resulting currents /, and I through both contacts were mea-
sured using independent current amplifiers. The actual volt-
age V, across the contact was measured via additional leads
in a four-probe configuration. Interchanging current and volt-
age probes did not change the observed signals. Measure-
ments were also performed with the roles of injector and
detector interchanged between contact A and B with consis-
tent results. In some cases, an additional dc bias Vy was
applied to contact B. Voltage and current polarities are indi-
cated in Fig. 1(b) by plus signs and arrows, respectively. For
our choice of current polarities EC leads to a positive non-
local conductance while CAR leads to a negative signal. The
ac components of V,, I, and Iz were measured simulta-
neously with lock-in technique, and from the in-phase sig-
nals the local and nonlocal differential conductances gua
=dl\/dV, and gag=dlg/dV, were extracted. Since we are
interested in nonlocal conductances which are smaller than
local conductances by orders of magnitude, care was taken to
ensure that the measured signals were not affected by phase
shifts or crosstalk between measurement lines. We performed
extensive electronic circuit simulations of the entire mea-
surement setup including amplifiers, filters, and cryostat wir-
ing. The simulations showed that the signals are reliable for

measurement frequencies up to =200 Hz, which was also
confirmed experimentally. All data shown in this paper were
taken at f~37 Hz with a typical ac amplitude of 5 uV. In
the remainder of the paper, V, and Vi will refer to dc bias
voltage, G will refer to normal-state conductance, and g will
refer to differential conductance.

For x-ray characterization, we also prepared unpatterned
bilayers in the same way as the overlap contact area of the
patterned samples, i.e., with a first layer of aluminum, sub-
sequent oxidation, and a second copper layer on top. X-ray
diffraction of these bilayer films was performed using copper
Ka radiation and a solid-state detector. Figure 2(a) shows
0-20 scans, with substrate background subtracted. The only
reflections we observed were the (111) reflections for both Al
and Cu. As an example, the expected positions of the (200)
reflections, and their expected intensities relative to the (111)
reflections, are also indicated by vertical bars for both mate-
rials. In Fig. 2(b), rocking curves for the two (111) reflec-
tions are shown, with a full width at half maximum of 0.35°
and 0.26° for Al and Cu, respectively. From the absence of
all but the (111) reflections, and their small width in the
rocking curve, we conclude that the films have a nearly per-
fect (111) texture.

III. RESULTS

The local conductance ga, of the injector contact A of
sample I is shown in Fig. 3(a) as a function of temperature T
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FIG. 2. (Color online) X-ray diffraction patterns of an unpat-
terned Al/oxide/Cu sandwich with substrate background subtracted.
(a) 6-26 scan with expected positions and relative intensities of
(111) and (200) reflections for both Al and Cu indicated by vertical
bars. (b) Rocking curve with angle of inclination w for the (111)
reflections of Al and Cu.
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FIG. 3. (Color online) Local conductance ga [(a) and (c)] and
nonlocal conductance gap [(b) and (d)] of sample I as a function of
temperature 7 at V,=0 [(a) and (b)] and injector bias V, at T
=25 mK [(c) and (d)]. The insets in (a) and (b) show the low-
temperature region of both plots on an enlarged scale. The solid
lines in (a) and (c) are fits to a standard BCS tunneling model.

for V,=0. Above the critical temperature 7,=1.35 K of the
aluminum film, a constant normal-state tunnel conductance
is observed. Below T, the conductance gradually drops to
zero, and can be fitted with a standard BCS (Refs. 20 and 21)
tunneling model, with zero-temperature gap Ay=205 weV
and normal-state conductance G,=1105 uS. Below about
250 mK, an additional conductance contribution not covered
by the tunneling model is observed. This anomaly can be
better resolved in the inset, where it is shown on an enlarged
scale. Figure 3(b) shows the nonlocal conductance g,p mea-
sured simultaneously. The overall behavior is similar to the
local conductance, including the presence of a low-
temperature anomaly, as seen in the inset. The low-
temperature anomaly decreases more steeply with increasing
temperature as compared to the local anomaly seen in the
inset of Fig. 3(a), as will be discussed later.

The local differential conductance g5, for the same con-
figuration is shown in Fig. 3(c) as a function of bias V, at
T=20 mK. It has the form of the BCS density of states as
expected for a tunnel contact with low transparency (7= 6
X 1075 for this sample, estimated from G, and the contact
area). The solid line is a fit to the BCS tunneling model with
the same parameters as in Fig. 3(a). Except for the small
zero-bias, low-temperature anomaly already seen in panel
(a), and discussed further below, the subgap conductance is
negligible, indicating a high-quality tunnel barrier without
pin holes. The nonlocal differential conductance g,y corre-
sponding to panel (c) is shown in panel (d). Similar to the
local signal, the subgap conductance is almost zero, with a
sharp transition to a finite signal above the gap. The signal
above the gap can be attributed to charge imbalance caused

PHYSICAL REVIEW B 81, 024515 (2010)

T T T4,
| (b) sample |

9pp (MS)

9 (MS)

-100 -50 0 50 100 -50 0 50 100

FIG. 4. (Color online) Local differential conductance g [(a)
and (c)] and nonlocal differential conductance g,p [(b) and (d)] as a
function of injector bias V, taken at different temperatures 7 for
sample I [(a) and (b)], and different magnetic fields B for sample II
[(c) and (d)].

by quasiparticle injection. A detailed investigation of the
nonlocal charge-imbalance signal will be reported elsewhere.
Figure 4 shows the low-temperature subgap anomalies
seen in both local and nonlocal conductance on an enlarged
scale. Panel (a) shows the local differential conductance of
sample I for different temperatures in the range between 25
and 200 mK, at zero magnetic field. A sharp peak is observed
at zero bias. The peak height decreases with increasing tem-
perature, as already observed in the inset of Fig. 3(a). At
Vo= *=20 uV, minima are seen, and for the lowest tem-
peratures the differential conductance actually becomes
negative. At higher bias, there are a series of side maxima,
which will be discussed in more detail below (see Fig. 8).
The positions of the maxima and minima are independent of
temperature. Panel (b) shows the nonlocal differential con-
ductance measured simultaneously. The nonlocal conduc-
tance shows a structure similar to the local one with a central
peak and negative side minima. The minima occur at Vj
~ * 15 uV, slightly below the position of the minima in the
local conductance. The anomaly decreases with temperature
and drops below the noise floor above 100 mK. Panels (c)
and (d) show the local and nonlocal differential conductances
of sample II at low temperature for different magnetic fields
B applied parallel to the substrate plane along the direction
of the copper wires forming the contacts. The signals are
almost identical to those observed in sample 1. As tempera-
ture, the magnetic field leads to a suppression of the anoma-
lies, on a field scale much below the critical field of the
aluminum wire (B,~ 600 mT, determined from conductance
measurements). While the amplitude of the signals is sup-
pressed by both finite temperature and magnetic field, no
change in the overall shape or voltage scales is seen.
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FIG. 5. (Color online) (a) gap as a function of V, for different
V. (b) Oscillatory part g, of the nonlocal conductance gap as a
function of both V, and Vg. (¢) gos. at V4=0 (symbols) and local
conductance ggg of contact B (line) as a function of Vg. (d) gepis
(symbols) and derivative of the local conductance dggg/dVy as a
function of Vg (line). All data are taken at B=0 and 7=20 mK
from sample II. For an explanation of g, and g, see text.

To study the nonlocal conductance pattern in more detail,
we have applied an additional dc bias Vj to the second con-
tact. Figure 5(a) shows gap as a function of V, for three
different values of V. The effect of Vj is twofold: first, there
is an overall vertical shift independent of V,, as can be
clearly seen at large bias. Second, there is a horizontal shift
of the maxima and minima of the oscillatory pattern. We can
therefore describe the signal as

8aB(Va. Vi) = ganit( V) + &ose(Va- V).

The vertical shift gy can be extracted from the data at
bias voltages around 60 wV, where the oscillatory signal
8osc has died out. g, obtained by subtracting g, 1S shown
in Fig. 5(b) in a color plot as a function of both V, and V.
The pattern is limited to a bias-voltage window |V, V]
=40 wV, and the shift of the maxima and minima is linear
in Vg, with a slope of about 0.7 (i.e., the signal does not
simply depend on V,— V). It can also be seen that additional
maxima and minima shift into the bias-voltage window upon
increasing | V).

Figure 5(c) shows g, as a function of Vy for V,=0, i.e.,
a vertical cut through Fig. 5(b), together with the local con-
ductance ggg of contact B, measured independently. As can
be seen, the two signals roughly scale onto each other. A
further correlation between nonlocal and local data can be
seen in Fig. 5(d), where gg,z is plotted as a function of Vi,
along with the second derivative dggp/dVg=d*Ig/ dVZB of the
local conductance of contact B.

Figures 6(a) and 6(b) show the dependence of the ampli-
tudes of the local and nonlocal subgap anomalies as a func-
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FIG. 6. (Color online) Normalized amplitudes of g,.. and ggife
together with the square of the amplitude of the subgap anomaly in
the local conductance (gx4)?, as a function of (a) temperature T and
(b) applied magnetic field B. Data taken from sample I.

tion of temperature and magnetic field. Data are taken from
sample I and normalized to the low-temperature and low-
field values. Both the local and nonlocal signals decay rap-
idly at temperature and field scales well below the critical
temperature 7,=1.3 K and critical field B,.=600 mT, re-
spectively. As can be seen, the two components g and ggis
of the nonlocal conductance both scale with the square of the
amplitude of the zero-bias anomaly in the local conductance.
The steeper decrease in the nonlocal conductance as a func-
tion of temperature has already been noted in Fig. 3.

In order to elucidate the role of DCB in our samples, we
have also investigated the differential conductance in the
normal state, where the impact of DCB is well known. Fig-
ure 7 shows both (a) local and (b) nonlocal differential con-
ductance in a magnetic field of 1.5 T, sufficiently large to
suppress superconductivity, at different temperatures. At
lowest temperature, the local conductance shows a low-bias
dip which can be well described by DCB in the presence of
an Ohmic environment,?? with environmental impedance
Reny=160 (, see fit in Fig. 7(a). The Coulomb dip persists
up to temperatures of about 2 K, well above the critical tem-
perature of aluminum. A similar dip appears in the nonlocal
conductance, shown in panel (b). The dip in the nonlocal
conductance is slightly narrower than in the local conduc-
tance and also persists up to about 2 K.
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FIG. 7. (Color online) (a) Local conductance g4 and (b) non-
local conductance gap of sample II in the normal state at B
=1.5 T for different temperatures 7. The solid line in panel (a) is a
fit to the standard model of dynamical Coulomb blockade (Ref. 22).
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FIG. 8. (Color online) [(a) and (b)] Differential subgap conduc-
tance of sample II at B=0 and 7=20 mK with regular background
subtracted (symbols). The lines are three different fits described in
detail in the text. (c) Measured nonlocal conductance amplitude gag
vs model prediction g\g=Rgaagpp eXp(=d/£). See text for details.

IV. DISCUSSION
A. Local conductance

We will first focus on the interpretation of the subgap
anomaly of the local conductance. Figure 8(a) shows the
differential conductance g, of sample II at low temperature
and zero field, together with three different models described
in the following. Here, a small regular background contribu-
tion of about 1 S has been subtracted to show the anomaly
more clearly. Panel (b) shows the same data on an enlarged
scale together with the ballistic model.

Diffusive model. A zero-bias conductance peak is known
to occur in low-transparency tunnel junctions between diffu-
sive normal metals and superconductors as a result of phase-
coherent enhancement of Andreev reflection (reflectionless
tunneling).>3-> The subgap conductance due to reflectionless
tunneling for different experimental situations has been cal-
culated in Refs. 26-29. A fit to the model of an overlap
junction including pair breaking [Eq. (6) of Ref. 29] shows
good agreement for the central peak but fails to describe the
additional minima and maxima. It should be noted that the
characteristic energy scale ey=0.18 weV controlling the
weight of the anomaly was actually not fitted but simply
calculated from known sample parameters. Only a small
amount of pair breaking (yy=4 wueV) had to be adjusted to
obtain the correct width (see Ref. 29 for the definition of the
parameters).

Ballistic model. Reflectionless tunneling results from the
constructive interference of repeated attempts of an electron
to be Andreev reflected at the tunnel junction. In a thin-film
overlap junction these repeated attempts will mostly come
from electrons bouncing back and forth between the junction
and the upper surface of the normal-metal film. Elastic scat-
tering in thin films can largely be attributed to grain bound-
aries and surfaces since both the elastic mean-free path and
the grain size are usually on the order of the film thickness.
Therefore, while electron motion in the lateral direction is
certainly diffusive, it can be assumed to be close to ballistic
perpendicular to the films, especially since our films show a
nearly perfect (111) texture. The ballistic limit of reflection-
less tunneling has been considered in Ref. 30 using semiclas-
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sical trajectories, similar to the treatment of diffusive motion
in Ref. 24. Including the phase difference due to finite elec-
tron energy E, Ap=2EL/%ivg,>* where L is the length of a
trajectory and v is the Fermi velocity, we obtain a differen-
tial conductance spectrum with a central peak and small,
equidistant side maxima, as seen best on a larger scale in Fig.
8(b). The fit parameters were chosen such that the height of
the central peak and the position of the side maxima are
reproduced. Better fits for either the central peak or the side
maxima could be obtained but only at the expense of the
other. In addition to the position of the side maxima, also
their decay at higher bias is reproduced. The negative differ-
ential conductance remains unexplained in this model.

Josephson model. A zero-bias peak with a subsequent re-
gion of negative differential conductance can be observed in
voltage-biased Josephson junctions in the phase-diffusion re-
gime. A part of the normal metal leads of our junctions, the
striped region in Fig. 1(b), actually consists of a Cu/Al/
oxide/Cu trilayer as a result of shadow evaporation. While
superconductivity in the aluminum of this trilayer must be
strongly suppressed by the inverse proximity effect, we can-
not exclude the presence of a weak Josephson coupling be-
tween the trilayer and the aluminum bar. As in the case of
reflectionless tunneling, the bottleneck for the Josephson
coupling would be pair transmission through the tunnel bar-
rier. The model of phase diffusion®! plotted in Fig. 8(a) gives
a qualitative description of the central peak and negative dif-
ferential conductance but no side maxima are predicted here.
The phase diffusion model predicts that the current maxi-
mum (i.e., the zero of the differential conductance) appears
at a voltage which is proportional to temperature. In contrast,
no temperature dependence of the voltage scales is observed
in our samples. In the light of the Josephson model, one may
ask whether the additional side maxima are the result of mul-
tiple AR (MAR).*? Peaks due to MAR would appear at char-
acteristic voltages V=2A/ne, where n is an integer corre-
sponding to the correlated transfer of n electrons. MARs are
inconsistent with our data for several reasons: first, they are
observable only at relatively high contact transparency due
to the multiple transmission through the interface. For the
same reason, the features with smallest , i.e., at highest bias,
should be the largest, in contrast to our observations. Also,
the observed side maxima are equidistant, and too few for
MAR (six should be visible between 50 and 150 weV, as-
suming the bulk gap A=200 wueV).

All three models have in common that they require phase-
coherent motion of Andreev pairs on the normal-metal side
of the tunnel junction. This is consistent with the fast sup-
pression of the conductance anomaly both as a function of
temperature and in the presence of a magnetic field. We con-
clude that the oscillatory structure in the local conductance is
caused by reflectionless tunneling close to the ballistic limit
while the negative differential conductance might indicate
the presence of a weak Josephson coupling.

Finally, we would like to address the impact of DCB in
the presence of a finite-impedance electromagnetic environ-
ment on the local conductance. As already discussed (see
Fig. 7), in the normal state the local conductance exhibits a
suppression at low bias, which can be explained by DCB
with an Ohmic environment.?> Considering our sample de-
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sign, we expect the series impedance to be mainly given by
the long, narrow aluminum wire. Indeed, the resistance of
the aluminum wire between tunnel junction B and lead 1 (see
Fig. 1) is 190 (), similar to R,,,=160 () extracted from the
fit. In the superconducting state, Coulomb blockade of sub-
gap transport is expected to be stronger than in the normal
state due to the double charge transfer of Andreev reflection.
Despite the presence of dynamical Coulomb blockade, we
observe a phase-coherent enhancement of subgap conduc-
tance in the superconducting state.

B. Nonlocal conductance

Theoretical descriptions of CAR and EC in lowest order
of contact transparency, i.e., in the tunneling limit, predict
the probability of both processes to be proportional to
GAGg{, where G, and Gy are the normal-state conductances
of the two contacts, and { is a factor related to the propaga-
tion of virtual quasiparticles between the contacts in the su-
perconductor. { depends on sample geometry, the mean-free
path and the coherence length £*3% In a one-dimensional
geometry with two point contacts at a distance d, ¢
=exp(-d/&). Since CAR and EC contribute with opposite
signs to the nonlocal conductance, their effect is expected to
cancel in the tunneling limit, i.e., gag=0. This is in contrast
to our observation of a positive nonlocal conductance (cor-
responding to EC) at low bias, followed by a crossover to a
negative signal (corresponding to CAR) at higher bias. As
can be seen in Fig. 5(b), the crossover is actually part of a
regular oscillatory pattern as a function of both injector and
detector bias voltage. We have found several correlations be-
tween the local and nonlocal subgap anomalies: Both exhibit
a central peak and an oscillatory dependence on bias voltage.
Some aspects of the local and nonlocal signals can be scaled
onto each other [Figs. 5(c) and 5(d)]. In particular, the am-
plitude of the nonlocal conductance anomaly scales with the
square of the local one, both as a function of temperature and
magnetic field. This shows conclusively that both must have
a common origin.

It has been predicted recently that reflectionless tunneling
in diffusive NSN structures leads to a subgap anomaly in the
nonlocal conductance which is proportional to the product of
the subgap anomalies in the local conductance of injector
and detector contact, i.e., gap*gaagpp.." This is similar to
the prediction of the lowest-order tunneling model discussed
above, except that the normal-state conductances G, and Gg
are replaced by the actual subgap anomalies g, and ggg.
Since the model in Ref. 34 assumes purely diffusive motion,
it only predicts a zero-bias peak, but no additional oscillatory
structure. For one-dimensional systems, the quantitative pre-
diction is gap=~R:gangnp exp(—d/&), where R; is the
normal-state resistance of the superconducting wire on a
length of & We cannot reproduce the nonlocal conductance
pattern in detail with this model, and will therefore restrict
ourselves to a discussion of the signal amplitudes. First we
note that the scaling of g g with gf\ A seen in Fig. 6 is fully
consistent with the model since within one sample g
=~ gpp. For a comparison of the different samples, we have
plotted the measured nonlocal conductance amplitude
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against the prediction in Fig. 8(c). As can be seen, the scaling
is obeyed reasonably well but the observed nonlocal signals
are too large by three orders of magnitude. The scaling is
expected to hold for arbitrary sample geometries while the
quantitative prediction is for the specific case of one-
dimensional systems. In the one-dimensional case, the same
model predicts the local anomaly to be g AA%RNGi, where
Ry is the resistance of the copper wire over the normal-metal
coherence length &y=VAD/e. For our sample parameters,
this underestimates the local anomaly by about 1 order of
magnitude, whereas the model of an extended overlap junc-
tion used in Fig. 8(a) provides the correct signal amplitude.
Whether a theoretical model of our specific nonlocal geom-
etry would similarly remedy the quantitative disagreement
seen in Fig. 8(c) remains an open question. Also, a model
treating the impact of reflectionless tunneling on nonlocal
transport in ballistic structures would be highly desirable to
see whether the oscillatory structure seen in the nonlocal
conductance can be reproduced.

An alternative explanation for the finite nonlocal subgap
conductance is dynamical Coulomb blockade. In Ref. 19, a
nonlocal version of DCB has been predicted to lift the exact
cancellation of CAR and EC in the tunneling limit. Depend-
ing on whether the blockade of CAR or EC is stronger, the
other process dominates, and g,z may be either positive or
negative. In this model, the blockade of CAR and EC is
controlled by coupling to electromagnetic modes of different
symmetry. Since these modes, in general, have different en-
ergies, a bias-dependent crossover from dominating EC to
CAR can be explained. The situation is simpler in the normal
state, where only EC is possible. In this case, the expectation
is a suppression of both local and nonlocal transport at low
bias, as indeed observed in Fig. 7. However, the Coulomb
dip in both local and nonlocal conductance persists to tem-
peratures 7>1 K, which is inconsistent with the tempera-
ture range 7=150 mK of the subgap anomalies in the su-
perconducting state. Also, DCB is not affected by a magnetic
field (the data in Fig. 7 were taken at B=1.5 T), whereas the
subgap anomalies are restricted to B=100 mT. The differ-
ences in energy, temperature, and magnetic field scales
clearly show that Coulomb interaction, while present in our
samples, is not the cause of the subgap anomalies in the
superconducting state.

V. CONCLUSION

In conclusion we have presented experimental results on
nonlocal  transport in  mesoscopic  normal-metal/
superconductor hybrid structures. Local and nonlocal con-
ductance exhibit correlated subgap anomalies, which are
shown to be due to phase-coherent enhancement of transport
at low energies. A systematic dependence of nonlocal trans-
port on bias conditions is observed, which allows control
over the dominating transport processes. Dynamical Cou-
lomb blockade can be ruled out as the cause of the subgap
anomalies. A comprehensive theoretical description is highly
desirable as a guideline for the design of superconducting
solid-state entanglers.
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